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Abstract-The fluid mechanics and mixing process of steady, laminar, finite and opposed-jets are theor- 
etically investigated. A finite-volume method is employed to numerically solve the corresponding transport 
equations. Calculated results are compared with the analytical similarity solutions and the experimental 
data for two cases of the non-identical opposed-jets, constituted by two different fluids, without rigid-body 
rotation and the identical opposed-jets with rigid-body rotation. Agreements show that the numerical 
solutions obtained from the complete transport equations yield accurate predictions, while the similarity 

solutions yield fair predictions under some limitations. 

1. INTRODUCTION 

FINITE opposed-jets with and without rigid-body 
rotation are of fundamental importance to under- 
stand local mixing phenomena in some combustible 
flows. In particular, the cases of opposed-jets with 
rigid-body rotation were used for simulating the flame 
interaction due to local vorticity [l-5]. For instance, 
Sohrab and co-workers investigated experimentally 
and theoretically the behaviors of the premixed flames 
[l, 21, the diffusion flames [3-51 and the transition of 
diffusion to premixed flames [6] in an opposed-jets 
flow (OJF) configuration when two cylindrical jets 
were separated with finite distance. These studies 
revealed the significant influences of flow vorticity on 
the flame behaviors, and disclosed a fact that the lack 

of complete knowledge concerning the fluid mech- 
anics and mixing process of OJF restricted further 
understanding of these reacting flow problems. The 
theoretical study of the rotating and non-rotating 
OJFs thus becomes necessary. 

In early analytical investigations, with objectives 
and basic equations closer to those of the present 
work, Batchelor [7] described general one- and two- 
parameter families of rotationally symmetric prob- 
lems corresponding to the fluid motion bounded by 

two rigid disks of infinite diameter but either infinite 
or finite separation distance with arbitrary angular 
velocities. Only qualitative analysis of these flow prob- 
lems is provided in this work. Proudman [8] as well 
as Seshadri and Williams [9] studied analytically the 
steady, laminar flows between two non-rotating 
porous disks of infinite diameter through which fluid 
was injected with the limit of large Reynolds number. 

-. 
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Recently, Wang [IO] investigated the impinging head- 
on jets of different fluid properties in the region near 
the stagnation point. The similarity solutions of the 
Navier-Stokes equations were obtained by matching 
all parameters at the interface. Goddard et al. [I I ] re- 
examined the steady flow problems bounded by two 

axisymmetric rotating disks of infinite diameter, 
which were the same as described in Batchelor’s work 
[7], by solving the self-similar form of Navier-Stokes 
equations with the finite-difference method. As part 
of their work, an analytical solution for the special 
case of large Reynolds number boundary-layer limit 
was found by using the linearized theory. Recently, 
Lin [ 121 developed similarity solutions for the inviscid 

OJF when two identical jets undergo rigid-body 
rotation of equal angular speeds in the opposite direc- 
tions. However, agreements between the similarity 
solutions and the experimental data were limited by 
the introduction of additional assumptions in the 
problem formulation. 

Current significant progress of computational fluid 
dynamics and the advent of the high-speed computer 
have led to many numerical investigations in jet 
impingement problems such as the performance of 
Vertical-Takeoff-and-Landing (VTOL) aircraft in 
ground effect [ 13. 141 and in radial outward flow prob- 

lems between two coaxial disks such as pumps, 
diffusers, rotating heat exchangers. disk brakes, etc. 
[I 51. Very few numerical studies of complete transport 
equations related to the present work can be found in 
open literature. Huang and MacInnes [ 161 performed 
numerical simulation of the outwash flow arising from 
the collision of two identical jets using three different 
turbulence models. 

The objective of this work is to numerically ana- 
lyze the transport processes in the finite, opposed 
identical/non-identical jets bounded between two 
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NOMENCLATURE 

A, B integration constant .x, mole fraction of species i 

d nozzle diameter [mm] XL axial length of computational domain 

D molecular diffusivity [m’ s- ‘1 Y, mass fraction of species i 

f function of x defined in equation (Al) Z transformed axial coordinate. 

F, G, H functions of z defined in equation 

(A7) Greek symbols 

Fr Froude number. (~4) */gL A coefficient defined in equation (4) 

Y gravity [m so ‘1 P molecular viscosity 

K constant P density 

L separation distance between two disks [m] 4 dependent variable 

M molecular weight V stream function defined in equation (Al) 

OJF opposed-jets flow w rotation speed [s- ‘I. 

P pressure 
r, s radial and axial coordinates, respectively Superscripts 
R universal constant 0 inlet position (dimensional form) 

Re Reynolds number, per&/& * dimensional form 

RL radial width of computational domain ’ differentiation. 

Ro Rossby number, wL/u” 

SC Schmidt number, pi/p:D Subscripts 

T temperature i, j running indices for species 

U, u, M: axial, radial and circumferential S stagnant position 

velocity components, respectively 1, 2 upper and lower parts of flowfield. 

porous disks with or without rigid-body rotation. 
These calculated results are compared with the ana- 
lytical similarity solutions and the experimental 
data obtained by Lin [12]. 

2. PROBLEM DESCRIPTION 

The OJF system [l, 3, 121, schematically shown in 
Fig. l(a), consists of two identically-aligned, cylin- 
drical injection nozzles with 51 mm i.d. (d,) and 53 

mm o.d. (do), which can rotate about their axis of 
symmetry. Each injection nozzle is driven by a vari- 

able-speed motor which allows for independent con- 
trol of angular velocity and rotation direction. A series 
of small wire-mesh screens and honeycombs are used 
to ensure rigid-body rotation of the gas inside the 
injection nozzles and to yield uniform velocity dis- 
tributions at the exit planes of the injection nozzles. 
The exit planes of the injection nozzles can, therefore, 
be imagined as two porous disks. The separation dis- 
tance (L) between these two exit planes is 22 mm. The 
lower injection nozzle is installed with an exhaust 
jacket for removal of the injecting fluids. The radial, 
axial and circumferential velocity components were 
measured using one-component laser Doppler velo- 
cimeter in the back-scattering mode. Magnesium 
oxide powder centered around 1 pm in size was used 
as the seedings for laser light scattering. Absolute 
magnitudes of velocities below about 0.05 m s- ’ can- 
not be precisely measured as a result of seeding mobil- 
ization difficulty and small signal to noise ratios. The 
measurements of the axial velocity component close 

to the stagnation plane as well as the measurements 
of the radial and circumferential velocity components 
near the axis of OJF may, therefore, be associated 
with significant errors. The qualitative aspects of the 
flow fields were performed by flow visualization 
obtained with laser-sheet-light illumination of mag- 
nesium oxide powder. Details of the experimental 

facility and procedure are referred to in ref. [ 121. 
Three steady-state cases of OJF with finite sep- 

aration distance : identical (air-air) and non-identical 
(He-air) OJFs without rigid-body rotation as well as 
identical OJF with rigid-body rotation are inves- 

tigated. Calculations of the axisymmetrically rotating, 
mixing problems require the simultaneous solutions 
of the transport equations representing the con- 
servation of species, mass, and momentum. The mass 
transport accounting for the inter-diffusion between 
He and air is modelled by Fick’s law. The density of 

the gas mixture is given, according to the ideal gas 
equation, by 

p=p,RT(&+$) 

where 

Ya,r = 1 - Y,,. (2) 

For determination of the viscosity of the gas mixture, 
the semiempirical formula of Buddenberg and Wilke 
[ 171 is adequate and is expressed by 

(3) 

in which 
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FIG. I. Schematics of (a) the experimental setup and (b) the computational domain of the finite, opposed- 
jets flow. 

A,,= [~+(~)‘i’(~T;*l”[*(~+~)~~*. (4) 

Here X, is the mole fraction of species i which can be 
converted from the mass fraction as follows 

(5) 

The value of diffusivity D for the present binary (He 
and air) system is estimated to be 8.1 x lo-’ m* s- ’ 
at 101.3 kPa and 298.2 K (room temperature with 
uncertainty of + 2 K) by using the formula developed 
by Slattery and Bird [18]. The viscosities of air and 
He are 1.851 x 10e5 and 1.987x 10m5 kg m* s-‘, 
respectively. 

3. THEORETICAL ANALYSIS 

Both analytical and numerical analyses are dis- 
cussed in this section. It is noted that the numerical 
analysis allows us to investigate the real transport 
phenomena occurring in OJF without any sim- 
plification, while some approximations must be made 
for analytical analysis in order to obtain the self- 
similar solutions. 

3. I. NumericaI analysis 
The transport equations of Table 1 are manipulated 

into a general partial differential form 
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Table I. Governing equations for rotating, mixing flow field 

P 
Re 

ii 
M 

Re 

Y 
P 

He 
-- 

Re SC 
0 

that permits a single solution procedure to be used for 
calculation. The finite~volume method inco~orated 
with the SIMPLER algorithm and the power-law 
scheme 1191 is employed to obtain the numerical soiu- 
tion. The inactive regions inside the upper and lower 
nozzles (see Fig. l(b)) are treated numerically by the 
blocking-off technique [19]. The blocking-off tech- 
nique consists of establishing known values of the 
relevant 4s (internal boundary conditions) in the 
inactive regions. Nevertheless, this technique is some- 
what wasteful of computer efforts in comparison with 
the technique such as the body-fitted coordinate [20]. 
Notwithstanding this consideration, the convenience 
of using a regular grid layout offers a significant 
advantage. 

Boundary conditions for the axis of symmetry, 
entrainment boundaries, inlet and outlet are required 
to be specified. For the symmetric axis denoted as 
plane 1 in Fig. 1 (b), the assumption of gradient-type 
condition, I!@/& = 0, is made except for the radial 
velocity component which is itself zero. For the upper 
and lower entrainment boundary (denoted as planes 
3 and 4), the zero-gradient conditions are assumed, 
provided that XI_. is large enough. The outlet bound- 
ary condition (at plane 2) is assumed to be fully 
developed. Test predictions have been performed by 
extending the lengths of XI. (66 mm) and YL (130 
mm) longer than the present ones (XL = 44 mm and 
YL = 110 mm). The influences of the enlarged com- 
putational domain on the predictions are negligibly 
small. This implies that the assumed entrainment and 
outlet boundary conditions for the investigated 
geometry are acceptable. According to the exper- 
imental condition stated in Section 2, uniform dis- 
tributions of axial velocity and zero radial velocity are 
specified at the two exit planes of the upper and lower 
nozzles. The distributions of circumferential velocity 
at these two planes are given by 

U’ = 2?iriI&@. (7) 

The mesh layout used for calculation consists of 
52 x 80 non-uniformly distributed grid nodes for 
entire computational domain of (x,r), with a dense 
gridline concentration in the region between the two 
nozzles. Mesh refinement test (comparing to the result 
with the mesh of 72 x 100) reveals that this non-uni- 
form mesh design has generated a nearly mesh-inde- 
pendent solution. 

Iteration convergence refers to the attainment, to 
within some tolerance, of an acceptable solution to the 
equation which requires &,, = #o,d. The convergence 
criterion adopted in the present calculation is that the 
maximum value of residual is less than 1O‘5 in the 
entire computational domain and for any of the 
dependent variables. 

3.2. Analytical analysis 
Consider an axisymmetric OJF as depicted in Fig. 

1 but bounded by two cylindrical porous disks with 
infinite diameter. Only two special cases adopted 
from ref. [12] are illustrated in the following for 
comparison. 

3.2.1. Non-identical OJF without rigid-body 
rotation. Further assumptions should be made to sim- 
plify the governing equations described in Table I so 
that the similarity solution can be found. The buoy- 
ancy effect and the dilatation effect (the volume 
change of a fluid element due to species mixing) are 
assumed to be negligible. As a matter of fact, the 
numerical solutions to the complete governing equa- 
tions in Table 1 show that these two effects are, indeed, 
negligibly small for the investigated problem. These 
two assumptions are, thus, appropriate. The two 
fluids injecting through two porous disks are with 
density p, and viscosity pi Subscript i = 1 and 2 rep- 
resent the upper (He) and lower (air) Aow fields, 
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respectively. These two fluids are assumed to be 
immiscible and to be separated by an interface (stag- 
nant) plane 13, 41. With this assumption, pi and p, 
are constant in each flow region, and the momentum 
equations are, then, decoupled with the species con- 
tinuity equation. The governing equations and their 
boundary conditions associated with the foregoing 
assumptions now become as follows : 

(10) 
u,(r, 1) = -1 and a,(~, 1) = 0 (Jla) 

u,(r,O) = 1 and vz(r, 0) = 0 (lib) 

u,(r,x,) = u&,x,) = 0 (1 lc) 

2 (r, x,) = 2 (r, x,) = 0 (1 Id) 

where x, denotes the axial position of the stagnant 
plane. The coordinates and velocity components are 
non-dimensionalized by the separation distance L and 
the magnitude of injection velocity, respectively. To 
simplify the problem, we let the injection velocities 
uy and U! satisfy uy = -US. 

Based upon the formulation shown in ref. [12] and 
the Appendix, the inviscid solutions were determined 
as 

and 

l-x 2 
uI = I-_& ( > ~ -1 

l-x 
UI=(l-x,)2r 

u2=1- x 2 

0 XS 

(12) 

(13) 

(14) 

X 
v2=lr 

X, 
(15) 

for the upper and lower parts of the flow field, respec- 
tively. The position of the stagnant plane can be deter- 
mined by balancing the axial inertia of the upper and 
lower jets and is expressed as 

x, = {1+1$1(;~‘r’- (16) 

For a particular non-isothermal situation when the 
two molecular weights of the upper and lower jets are 
identical, the result in equation (16) can be rewritten 
in the form 

which is the same as obtained by Seshadri and 
Williams [9]. 

For the viscous solution, equation (A4) is solved 
numerically using the Runge-Kutta method. 

3.2.2. Identical OJF with rigid-body rotation. Two 
porous disks shown in Fig. 1 are made to rotate about 
the axis of symmetry in the opposite directions. The 
rigid-body rotating motion of the porous disk yields 
an initial constant angular speed w to the injected 
fluid at the exit planes of the disk. To simplify the 
problem, an identical OJF is chosen for analysis and 
x, = 0.5. Due to the symmetric characteristic about 
the stagnant plane, only the lower half part of flow 
field 0 < x < 0.5 is examined in the following. The 
governing equations and the required boundary con- 
ditions are specified as 

au au ~2 ap 
vY&+uY&-r= -5 

+~[~~(r~)+~--~] (20) 

(21) 

u(r, 0) = 1, v(r, 0) = 0, w(r, 0) = 2nr Ro (22a) 

u(r,ij) = 0, g (r,;) = 0, w(r,k) = 0 (22b) 

where the Rossby number Ro is defined by 

Ro=e. 
u” 

The similarity solution is developed following von 
Karman [21] by requiring that u, v/r and w/r are all 
functions of x alone. Following the detailed procedure 
shown in the Appendix, the velocity components can 
be found as 

sin 22 
v= Ror 

1 -cos Ro 

cos 22 - cos Ro 
w= Ror 

1-cosRo 

(24) 

(25) 

The viscous solutions can be obtained by applying the 
RungeKutta numerical method to equations (A9)- 
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(Al 1) with the boundary conditions of equation 
(A13). 

4. RESULTS AND DISCUSSION 

Numerical predictions are presented together with 
the analytical similarity solutions and the exper- 
imental data coming from ref. [ 121. 

4.1. OJF without rigid-body rotation 

Two cases are investigated in this subsection. The 
first case is the identical (air--air) OJF with 

-tiy = U: = 0.453 m SK’ and Re = 660. The second 
one is the non-identical (He-air) OJF in which the 

light fluid, He, is injected downward from the upper 
nozzle and the heavy fluid, air, is injected upward 
from the lower nozzle. The two initial velocities are 
the same as the case of the identical OJF but the ratio 

of initial momentum fluxes of He jet to air jet is equal 
to MHe/Ma,, = 0.1382. 

Figure 2 presents the comparisons of the numerical 
and analytical predictions of centerline axial velocities 

for both identical and non-identical cases of OJF. 
Since the measurements of centerline axial velocity for 
the non-identical OJF are not available in ref. [12], 
only the experimental data for the identical OJF is 
inc!uded in Fig. 2. It is seen from the comparison 
of the theoretical and experimental results for the 
identical OJF that the numerical and both similarity 
(inviscid and viscous) solutions are in good agreement 
with the measurements. The presumption of infinitely 

large disk-diameters leads to slight discrepancies 
between the numerical and similarity solutions. 
Nevertheless, the discrepancies between the numerical 

0.61 

0.4- 

_(i ; ~~~~~~~.s~~ 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

FIG. 2. Comparisons of numerical and similarity solutions 
of axial velocity with experimental data for identical and 
non-identical OJFs without rigid-body rotation at axis of 

symmetry. 

and similarity solutions become relatively significant 
in the case of non-identical OJF as shown in Fig. 2. 
It just happens that the inviscid similarity solutions of 
the centerline axial velocity have smaller differences 
from the numerical solutions than the viscous simi- 
larity solutions for both identical and non-identical 

OJFs. 
The variations of radial velocity along the axial 

coordinate obtained either theoretically or exper- 
imentally at six radial sections for the identical OJF 

are presented in Fig. 3. It is found that the differences 
between the inviscid and viscous similarity solutions 

of radial velocity are still negligibly small, as discussed 
before. The viscous solutions are, therefore, not pre- 
sented in Fig. 3. The comparison reveals that the 
inviscid similarity solutions incorporated with the pre- 
sumption of infinitely large disk-diameters are con- 
sistent with the numerical solutions which are solved 
directly from the Navier-Stokes equations without 
approximation. The theoretical and experimental 
solutions shown in Fig. 3 are in good agreement except 
in the region close to the stagnant plane. These incon- 

sistencies may stem from the experimental conditions 
performed in Lin’s work [12]. The installation of an 
exhaust jacket around the lower injection nozzle may 
yield an external, unsymmetric (with respect to the 
stagnant plane) pressure gradient distribution in the 
present OJF problems. As a result, the entrainment 

and outlet boundary conditions are not exactly as 
those specified in Section 2. 

The comparison of the two similarity (inviscid and 
viscous) solutions, the numerical solution and the 
experimental data of radial velocity distribution at the 
section of r* = 11 mm for the non-identical OJF is 
presented in Fig. 4. Apparently, the position of the 

stagnant plane is shifted towards the nozzle with the 
smaller injection inertia, i.e. the He jet. As a result 

of the immiscible assumption, both inviscid and viscous 
solutions have sharp discontinuities at the stagnant 
position (s, = 0.74) which are not found in the 
numerical and experimental investigations. This 
reveals that the mixing of He and air jets in the regions 
near the stagnant plane is significant and cannot be 
ignored. It is noted that the differences between the 
inviscid and viscous solutions in the He (upper) side 
are larger than in the air (lower) side as indicated in 

Fig. 4. This is attributed to the smaller initial Reynolds 
number (Re = 84) in the He jet than Re = 660 in the 

air jet. As Re decreases, the viscous term appearing in 
equation (10) becomes more important and, thus, 
cannot be dropped in the problem formulation. On 
the other hand, the numerical solution which takes 
into account all transport processes gives a very satis- 
factory result as compared with the experimental data. 
Note that the relatively significant discrepancies 
between the numerical and experimental results also 
appear in the region around .x/f. = 0.5 as we have 
observed in Fig. 3. In order to support explicitly the 
foregoing argument that the mixing process is impor- 
tant in the fomulation of non-identical OJF, the axial 
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----- inviscid simil. soln. 
exp. data [12] 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 
V 

FIG. 3. Comparisons of numerical and similarity solutions of radial velocity with experimental data for 
identical OJF without rigid-body rotation at six radial sections. 

distributions of species mass fraction at the axis of 
symmetry are plotted in Fig. 5. It is clear that the 

two fluids (He and air) are not immiscible and the 
thickness of the mixing layer is about one fifth of the 

0.8 

0.6 

X 0.5 --inviscid simil. solu 
----- numer. solu 

viscous simil. solu. 
0.4 q exp. data [12] 

0.3 

FIG. 4. Comparisons of numerical and similarity solutions 
of radial velocity with experimental data for non-identical 
OJF without rigid-body rotation at radial section of r* = 

separation distance between the two nozzles in this 

case. 

4.2. Identical OJF with rigid-body rotation 
In this case, air is introduced into both the upper 

and lower injection nozzles which rotate in opposite 
directions, i.e. -WY = wi, with -ut = ~4: = 0.453 m 

S - '. The axial and circumferential velocities vanish at 

the stagnation plane (x, = 0.5) and have different 

1.0 

i 

________________ 

0.9 

= 0.8-l 
.r 

Y :: 0.7- 

% 0.6- ---- Air, Re = 660 
s - He, Re = 84 
5. 0% 

x 
t 

0.L 

2 t 0.3- 

0.21 

0.14 

--. 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

x 

FIG. 5. Profiles of mass fractions of He and air for non- 
identical OJF without rigid-body rotation at axis of 

11 mm. symmetry. 
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signs in the upper and lower half parts of the flow 
field. Basically, the centrifugal force (us’/r) and the 
inertia force (viru/?.u) are balanced by the radial press- 
ure gradient, according to equation (20). near the 
injection plants of the nozzles. The radial pressure 
gradient remains almost the same but u and N’ vanish 

as the fluid approaches the stagnant plane along the 
axial direction. This radial pressure gradient directed 
inwardly to the axis of the jets weakens the radially 
outward flow in the regions near the stagnant plane. 

Increasing the magnitude of i?p,i& will eventually 
induce a radially inward secondary flow resulting in 
the formation of a recirculation zone on either side of 
the stagnant plane. as depicted in Fig. 6(b), which is 
well known as the ‘tea cup’ effect [22]. The value 

of ?p/& is proportional to the second power of the 
rotation speed, CJ, based on the expression of equation 
(Al2). Figure 6 shows schematically the evolution of 

the recirculation zone which has been experimentally 
observed by Lin [ 121 using the flow visualization tech- 

nique. When the rotation speed is increased, the region 
of recirculation with ordered streamlines grows in size 
both axially and radially. As the outside boundary of 
the flow field is under atmosphere conditions, the 
thickness of the recirculation zone remains constant in 

the central portion of the OJF but is reduced by 

(a) low w (b) intermediate w 

(c) high w 

FIG. 6. Schematics of evolution of recirculation zone in 
identical OJF with rigid-body rotation. 

diminishing the pressure gradient in large radial dis- 
tance as illustrated in Fig. 6(b). Due to the rotation 
speed being increased further, the well defined laminar 
recirculation zone breaks down and small unsteady 
eddies are generated within the recirculation zone, as 
illustrated in Fig. 6(c). This means that the type of 
OJF has moved from the laminar regime to the tran- 

sition regime. 
Figure 7 compares the numerical predictions of the 

axial distributions of the radial velocity with the exper- 
imental data at the radial section of r* = 14 mm for 

six different rotation speeds. It can be seen from Fig. 
7(b) that the negative radial velocities appear in the 
regions near the stagnant plane when the rotation 
speeds exceed 10 rev s- ‘. This shows the formation 
of recirculation zones around the stagnant plane. The 

agreements of the numerical solutions and exper- 
imental data presented in Fig. 7 are generally good 
except for the case with w = 12 rev s ‘_ Lin [12] 

observed from the experiment that numerous small 
unsteady eddies start to form inside the recirculation 
zone, as illustrated in Fig. 6(c), when the rotation 
speed slightly exceeds 12 rev s ’ with the present case 
of Re = 660. It is, therefore, speculated that the case 
with w = 12 rev s- ’ may lie in the ambiguous border 
between the laminar and transition regimes. Accord- 
ingly, the solution of the present laminar formulation 
for the case with w = 12 rev s ’ cannot agree well 

with the experimental data. 
The influence of the viscous-vorticity interaction 

term, which appeared in equation (AIO), is found to 
be small in the present case incorporated with a small 
ratio of Rossby number to Reynolds number 
(RojRr < 1 O- ‘). Only the inviscid similarity solutions 

are presented in the following discussion. Both simi- 
larity and numerical solutions of the radial velocity 
distribution at the radial section of r* = 14 mm are 
displayed in Fig. 8. The comparison shows that, as the 
rotation speed is increased, the discrepancy between 
these two solutions becomes more significant. The 
comparisons of the similarity and numerical solutions 
with the experimental data for the axial distributions 
of axial velocity and the radial distributions of cir- 
cumferential velocity are presented in Figs. 9 and 10, 

respectively. In general, the discrepancies between the 
numerical and similarity solutions have the same 
trends as shown in Fig. 8. A comparison from Fig. IO 

reveals that the discrepancy becomes larger as the 
radial position moves far away from the central part 
of the rotating porous disks, This is primarily attri- 
buted to the assumption of an infinite-diameter disk 
embedded in the similarity solution. It is also observed 
from Fig. 10 that the numerical and experimental 
results have different trends as the radial position 
moves closer to the rim of the disk particularly with 
large rotation speeds. This may be attributed to the 
existence of an external pressure gradient field stcm- 
ming from the exhaust system in Lin’s experiment 
[12]. In general, both theoretical solutions have fair 
agreements with the measurements, but the error of 
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FIG. 7. Comparisons of numerical solutions of radial velocity with experimental data for identical OJF 
with six different rotation speeds at radial section of r* = 14 mm. 

the similarity solution grows with increasing rotation 

speed. 

5. CONCLUSIONS 

Numerical analysis of the finite, laminar OJFs are 
performed and compared with the analytical solutions 
and the measurements made by Lin [12]. It shows 
that the corresponding transport equations associated 
with the finite-volume method employed in this work 

can yield accurate predictions of the OJF problems. 
Analytical solutions are all obtained from the self- 
similar equations with some approximations and, 
accordingly, have some limitations in practical appli- 
cations. First, the assumption of the infinite diameter 
of the disks restricts the similarity solutions being 
applicable to the central part of the interest domain 
only. Secondly, the error of similarity solution grows 
generally with the increasing rotation speed. In 
addition, the exclusion of mixing process in the for- 
mulation of the non-identical OJF constituted by two 
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FIG. 8. Comparisons of numerical and similarity solutions FIG. 9. Comparisons of numerical and similarity solutions 
of radial velocity for identical OJF with three rotation speeds of axial velocity with experimental data for identical OJF 

at radial section of Y* = 14 mm. with four rotation speeds at radial section of r* = 14 mm. 
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FIG. 10. Comparisons of numerical and similarity solutions 
of circumferential velocity with experimental data for ident- 
ical OJF with four rotation speeds at axial section of x* = 

4 mm. 

different fluids fails in the flow field prediction in the 
mixing layer. Nevertheless, the simple forms of the 
self-similar equations permit us to qualitatively inves- 
tigate the OJF problems with less effort in the pre- 
liminary stage. It is also found that the viscous effects 
in the present OJF problems are small and the inviscid, 
closed-form solutions can give fair predictions in the 
study. 
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APPENDIX 

A. 1. Non-identical OJF without rigid-body rotation 
On the basis of specified governing equations @-(lo) 

we define a stream function Y, as 

Y’, = --r’f;(.r) (At) 

and result in the expressions of the velocity component as 

u,(r,x) = 
1 i;*, 

-~ = -2/;(.tv) 
r & 

(A2) 

v,(r,x) = - 1 ‘g = rf;‘(x) L43) 

where the superscript “’ denotes the differentiation with 
respect to x. Inserting equations (A2) and (A3) into equa- 
tions (9) and (lo), reduces these two momentum equations 
to a nonlinear ordinary differential equation 

(.f;‘) 2 - 2fj.t” -,fi”‘i Re, = A , (A4) 

where A, is an integration constant. The boundary con- 
ditions of equation (1 I) become .f,(l) = -f>(O) = l/2 and 
f’{(l) =fi(O) =f;(x,) =f;“(.v,) = 0. 

Equation (A4) can be further simplified by dropping the 
viscous term under the limit of large Reynolds number and 
becomes 

Note that 

(f’)‘-gf:f.” = A,. (A4’) 

(1”)’ ’ L-1 =.f~yFu’)21 
J .J’ 

Substitution of equation (A4’) into the above equation and 
integration with respect to x yields 
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(f’)’ _ !L +A* 

f f 

or 

f’= FJ(AS+A,) (A5) 

where A, is the second integration constant. Integrating 
equation (A5) once more, one obtains 

+w+A,) = kx+A, 

Of 

f= K?x*+K,x+K, (‘46) 

where K,, K, and K2 are three constants. Employment of the 
boundary conditions in the upper part of the flow field gives 

K,=!-1- K, = 
1 

2 2(1-x,)2’ (I 

and 

1 
K,= -~ 

2(1-x$)” 

Based upon the definitions shown in equations (A2) and 
(A3), one obtains the inviscid solutions as expressed in equa- 
tions (12)-(15). 

A.2. Identical OJF with rigid-body rotation 
Following the study of von Karman [21], we assume that 

the velocity components have the form 

U = F(i), v = r Ro C(z), w = r Rofffz) 647) 

where a new axial coordinate z is defined by 

z=xRo. (W 

Introduction of equations (A7) and (AS) into equations 
(1X)-(21) leads to a reduced system of ordinary differential 

equations as follows : 

F’+2G = 0 (A9) 

G2-H2+FG’+ ;G = B (AlO) 

2GH-kFILL 9%W = 0 (Al 1) 

where B is constant. From equation (20), the radial pressure 
gradient may also be expressed in the form of 

g = -BRo2r. (A121 

The boundary conditions to be imposed on the solutions of 
equations (A9)-(All) are 

F(0) = 1, G(0) = 0, H(0) = 1 (A13a) 

G’(z,) = 0 and H(z,) = 0 (A13b) 

where zs = Ro/2 denotes the position of the stagnant plane. 
As observed from equations (AlO) and (Al 1). the viscous 
effect is coupled with the flow vorticity. However, the pure 
vorticity effect can be firstly studied from the above self- 
similar equations by dropping the viscous-vorticity inter- 
action terms in equations (AlO) and (Al 1). The inviscid 
solutions incorporated with the boundary conditions in 
equation (A13) have been given by [2. 121 

(A14) 

F(z) = H(z) = 
cos 22 - cos Ro 

, _cos R. (Al9 

Substitution of equations (A14) and (AlS) into equation 
(A7) yields the inviscid solutions as expressed in equations 
(24))(26). 

ANALYSE DE JETS OPPOSES LAMINAIRES FINIS AVEC OU SANS ROTATION 
D’ENSEMBLE 

Resume-On Ctudie par voie thiorique les mecanismes de mecanique des fluides et de melange permanents, 
laminaires des jets opposes. Une methode de volumes finis est employee pour resoudre numeriquement les 
equations correspondantes de transport. Des risultats du calcul sont compares avec les solutions analytiques 
affines et avec les don&es experimentales pour deux cas de jets opposes non identiques, constituirs par 
deux fluides differents sans rotation et de jets opposes identiques avec rotation. Les solutions numeriques 
fournissent des predictions precises tandis que les solutions affines donnent de bonnes predictions sous 

certaines conditions. 

ANALYSE VON BEGRENZTEN LAMINARSTRAHLEN IM GEGENSTROh. MIT UND 
OHNE FESTKORPERROTATION 

Zusammenfaasung-Es wird die Fluidmechanik und der MischungsprozeB von stationaren laminaren 
begrenzten und sich im Cegenstrom bewegenden Strahlen theoretisch untersucht. Dazu wird eine Finite- 
Volumen-Methode verwendet, urn die korespondierenden Transportgleichungen zu l&en. Die berech- 
neten Ergebnisse werden mit den analytischen Ahnlichkeitslosungen und den experimentellen Daten fiir 
zwei verschiedene FIlle von Gegenstromstrahlen verglichen. Dabei handelt es sich urn zwei unterschiedliche 
Fluide ohne Festkorperrotation sowie gleiche Gegenstromstrahlen mit Festkorperrotation. Die Uber- 
einstimmungen zeigen, dal3 die von den kompletten Transportgleichungen erhaltenen numerischen 
Liisungen genaue Voraussagen liefern, wahrend die Ahnlichkeitslosungen gute Voraussagen unter 

bestimmten Einschrankungen ergeben. 
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AHAJIW3 OI-PAHHgEHHbIX JIAMkiHAPHbIX BCTPEqHbIX CTPY$i IIPki HAJIkiWiM M 
OTCYTCTBMM AX BPABJEHMJI KAK TBEPAOI-0 TEJIA 

hMOTaQiI%-TeOpeTPECKH wccnenymTcn MexaHtiKa u npoqecc chseueHm ycroiirssb~x naMrrHapHblx 

OrpaHH'ieHHbJX BCTpeSHblX CTpyii. &Ul WiCJleHHOrO peIlleHHK COOTBeTCTByIOIlWX ypaBHeHHi IIepeHOGi 

AClIOJIb3yeTCK MeTOA KOHe'iHbIX 06LeMOB. k3yJIbTaTbI paC'ieTOB CpaBHHBalOTCK C aHaJI&iTHWCKHMU 

aBTOMOL,eJlbHbIMH peJ"eHHKMH U 3KCllepHMeHT~bHblMH JWHHbIMH J&W, J(ByX Cny'taeB CO BCTpeliHblMEi 

CTpyRMHLIByX pa3JIHYHbIX~OCTeiinpEl OTCyTCTBHH BpaIQeHHRKaKTBepnOrOTeJ‘aHC OAHHaEOBbIMH 

BmpeqHbIMH CTpyKMH npH HaJIHqHH TaKOl-0 BpallteHHK. nOKa3aH0, YTO pe3yJIbTaTbI WiCJIeHHbtX 

pellleH%di IlOJlHbIX ypaBHeH& I,epeHOW RBJIKIOTCK TOWibIMH,B TO Bpe?,,,l KaY aBTOMOLleJIbHb,e pelueHHK 

~atoT~OBOJIbHOTOSH~e~3y~bTaTbI~pHHeKOTOpblXOTpaHHSeHUIIX. 


